Microneedle Array Design Determines the Induction of Protective Memory CD8+ T Cell Responses Induced by a Recombinant Live Malaria Vaccine in Mice
نویسندگان
چکیده
BACKGROUND Vaccine delivery into the skin has received renewed interest due to ease of access to the immune system and microvasculature, however the stratum corneum (SC), must be breached for successful vaccination. This has been achieved by removing the SC by abrasion or scarification or by delivering the vaccine intradermally (ID) with traditional needle-and-syringes or with long microneedle devices. Microneedle patch-based transdermal vaccine studies have predominantly focused on antibody induction by inactivated or subunit vaccines. Here, our principal aim is to determine if the design of a microneedle patch affects the CD8(+) T cell responses to a malaria antigen induced by a live vaccine. METHODOLOGY AND FINDINGS Recombinant modified vaccinia virus Ankara (MVA) expressing a malaria antigen was percutaneously administered to mice using a range of silicon microneedle patches, termed ImmuPatch, that differed in microneedle height, density, patch area and total pore volume. We demonstrate that microneedle arrays that have small total pore volumes induce a significantly greater proportion of central memory T cells that vigorously expand to secondary immunization. Microneedle-mediated vaccine priming induced significantly greater T cell immunity post-boost and equivalent protection against malaria challenge compared to ID vaccination. Notably, unlike ID administration, ImmuPatch-mediated vaccination did not induce inflammatory responses at the site of immunization or in draining lymph nodes. CONCLUSIONS/SIGNIFICANCE This study demonstrates that the design of microneedle patches significantly influences the magnitude and memory of vaccine-induced CD8(+) T cell responses and can be optimised for the induction of desired immune responses. Furthermore, ImmuPatch-mediated delivery may be of benefit to reducing unwanted vaccine reactogenicity. In addition to the advantages of low cost and lack of pain, the development of optimised microneedle array designs for the induction of T cell responses by live vaccines aids the development of solutions to current obstacles of immunization programmes.
منابع مشابه
Profiling the Targets of Protective CD8+ T Cell Responses to Infection
T cells are critical effectors of host immunity that target intracellular pathogens, such as the causative agents of HIV, tuberculosis, and malaria. The development of vaccines that induce effective cell-mediated immunity against such pathogens has proved challenging; for tuberculosis and malaria, many of the antigens targeted by protective T cells are not known. Here, we report a novel approac...
متن کاملRecombinant Viral Vaccines Expressing Merozoite Surface Protein-1 Induce Antibody- and T Cell-Mediated Multistage Protection against Malaria
Protecting against both liver and blood stages of infection is a long-sought goal of malaria vaccine design. Recently, we described the use of replication-defective viral vaccine vectors expressing the malaria antigen merozoite surface protein-1 (MSP-1) as an antimalarial vaccine strategy that elicits potent and protective antibody responses against blood-stage parasites. Here, we show that vac...
متن کاملInduction of Immunogenic Response in BALB/c Mice by Live and Killed Form of Recombinant Lactococcus lactis Displaying EG95 of Echinococcus granulosus Immunogenic Response in BALB/c Mice
Background: CE is a zoonotic parasitic infection caused by Echinococcus granulosus worldwide and is associated with economic losses among livestock animals. EG95 is an immunogenic antigen from the E. granulosus. Lactococcus lactis has been prested as a safe vehicle for antigen delivery. The goal of this study was to design a novel L. lactis strain displaying EG95 as a vaccine delivery system. M...
متن کاملCD8 T cell immunity to Plasmodium permits generation of protective antibodies after repeated sporozoite challenge.
Individuals living in malaria endemic areas are subject to repeated infections yet fail to develop sterilizing immunity, however, immunization of mice with attenuated sporozoites or subunit vaccines has shown the ability to protect mice against a sporozoite challenge. We recently reported that mice primed with dendritic cells coated with the dominant circumsporozoite CD8 T cell epitope from Pla...
متن کاملEffect of LIGHT Adjuvant on Kinetics of T-Cell Responses Induced by HSV-1 DNA Immunization
Background: Studies on efficacy of various vaccines that prevent or reduce the primary and recurrent HSV-1 infection have demonstrated the importance of cellular immunity for protection against the infection. We previously used DNA vaccination to induce cellular immunity against HSV-1 infection in mice. Objective: The aim of our study was to evaluate the effect of LIGHT, a member of TNF super f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2011